标題: Advanced and Durable Self-Standing MoC-Mo2C Electrode for Alkaline Hydrogen Evolution in Chlor-alkali Electrolysis
作者: Zhang, Y (Zhang, Yu); Liu, XL (Liu, Xianglin); Li, WT (Li, Wenting); Liu, W (Liu, Wei); Yin, HY (Yin, Huayi); Wang, DH (Wang, Dihua)
來源出版物: ACS SUSTAINABLE CHEMISTRY & ENGINEERING DOI: 10.1021/acssuschemeng.3c01721 提前訪問日期: JUN 2023
摘要: A MoC-Mo2C electrode preparedby the electro-carbonizationin molten salt of Li2CO3-K2CO3 demonstrates excellent performance for the HER in a simulatedchlor-alkali electrolyzer.
Energy saving is crucial for the modern chlor-alkaliindustry toreduce its carbon footprint and production cost. Herein, an efficientMoC-Mo2C electrode synthesized in molten salt was reportedfor the alkaline hydrogen evolution reaction (HER) in a simulatedchlor-alkali cell. The MoC-Mo2C electrode displays a lowoverpotential of 179 mV at 500 mA cm(-2), which ismuch lower than that of a low-carbon steel electrode (eta(500) = 436 mV) for the HER in chlor-alkali conditions (i.e.,3 M NaOH + 3 M NaCl at 85 degrees C), and it exhibited high stabilitywithin 100 h. Furthermore, the effects of NaOH and NaCl concentrationsand operating temperatures on its performance for the HER were systematicallyinvestigated. The honeycomb-like porous morphology, good hydrophilicity,and unique electronic structure of the electrode are the reasons forits excellent HER activity and durability. This work extends a novelexcellent and cost-affordable self-standing MoC-Mo2C HERelectrode for application in the chlor-alkali industry, which wouldgreatly reduce the energy consumption of the process.
作者關鍵詞: molten salt electrolysis; self-standing MoC-Mo2C electrode; alkaline HER; chlor-alkali industry; over stability
地址: [Zhang, Yu; Liu, Xianglin; Li, Wenting; Liu, Wei; Yin, Huayi; Wang, Dihua] Wuhan Univ, Sch Resource & Environm Sci, Wuhan 430072, Hubei, Peoples R China.
通訊作者地址: Wang, DH (通訊作者),Wuhan Univ, Sch Resource & Environm Sci, Wuhan 430072, Hubei, Peoples R China.
電子郵件地址: wangdh@whu.edu.cn
影響因子:8.4
版權所有 © 88858cc永利官网
地址:湖北省武漢市珞喻路129号 郵編:430079
電話:027-68778381,68778284,68778296 傳真:027-68778893 郵箱:sres@whu.edu.cn