首頁  >  科研動态  >  正文
科研動态
潘聰(博士生)、李進軍的論文在CHEMICAL ENGINEERING JOURNAL刊出
發布時間:2024-05-15 16:57:42     發布者:易真     浏覽次數:

标題: Heterogeneous activation of peroxymonosulfate over porous graphitized carbon-supported CoS catalyst for efficient removal of gaseous chlorobenzene

作者: Pan, C (Pan, Cong); Zhang, YH (Zhang, Yihui); Wang, WY (Wang, Wenyu); Wu, F (Wu, Feng); You, ZX (You, Zhixiong); Xu, J (Xu, Jing); Li, JJ (Li, Jinjun)

來源出版物: CHEMICAL ENGINEERING JOURNAL  : 485  文獻号: 149831  DOI: 10.1016/j.cej.2024.149831  Early Access Date: FEB 2024  Published Date: 2024 APR 1  

摘要: Chlorobenzene (CB) is a typical example of chlorinated volatile organic compounds (CVOCs) that require pollution control. Using wet scrubbers coupled with advanced oxidation processes (AOPs) has become a promising technique to degrade gaseous CVOCs. Here, a CoS-loaded porous graphitized carbon (PGC) served as an adsorbent for CVOCs and a catalyst to activate peroxymonosulfate (PMS) to construct a wet scrubber for CB degradation. CoS/PGC exhibited excellent catalytic performance at pH 9.0; a 0.1 g/L CoS/PGC dosage and a 10 mM initial PMS concentration achieved 90% CB (25 ppmv) removal within 500 min. Electron spin resonance and quenching experiments identified hydroxyl radicals and sulfate radicals as the main reactive oxygen species that removed CB. In addition, we proposed possible CB degradation pathways by intermediates identified using liquid chromatography-mass spectrometry and density functional theory calculations. Electrochemical experimental results such as cyclic voltammetry and Nyquist proved that CoS/PGC has superior electron transport capacity compared to CoS. A possible catalytic mechanism for CB removal in CoS/PGC + PMS system was proposed by ESR and XPS spectra. By using continuous dosing or pulsed dosing to replenish PMS to maintain its suitable concentration, the system achieves a commendable long-term efficiency. Moreover, this catalyst displayed excellent recyclability and universal applicability to treat various gaseous CVOCs as well as the scrubbing solution replacement with tap water for efficient CB removal. This study may provide new fundamental insights into the PGC-supported catalysts for wet oxidation of CVOCs or other contaminants.

作者關鍵詞: CVOCs; CoS/PGC; Wet scrubber; Catalytic wet oxidation; PMS

KeyWords Plus: VOLATILE ORGANIC-COMPOUNDS; DEGRADATION; ADSORPTION; OXIDATION; PERFORMANCE; KINETICS; VOCS; NANOPARTICLES; PERSULFATE; ATRAZINE

地址: [Pan, Cong; Zhang, Yihui; Wang, Wenyu; Wu, Feng; You, Zhixiong; Li, Jinjun] Wuhan Univ, Sch Resource & Environm Sci, Hubei Key Lab Bioresource & Environm Biotechnol, Wuhan 430079, Peoples R China.

[Xu, Jing] Wuhan Univ, State Key Lab Water Resources Engn & Management, Wuhan 430072, Hubei, Peoples R China.

通訊作者地址: Li, JJ (通訊作者)Wuhan Univ, Sch Resource & Environm Sci, Hubei Key Lab Bioresource & Environm Biotechnol, Wuhan 430079, Peoples R China.

Xu, J (通訊作者)Wuhan Univ, State Key Lab Water Resources Engn & Management, Wuhan 430072, Hubei, Peoples R China.

電子郵件地址: jingxu0506@whu.edu.cn; lijinjun@whu.edu.cn

影響因子:15.1


信息服務
學院網站教師登錄 學院辦公電話 學校信息門戶登錄

版權所有 © 88858cc永利官网
地址:湖北省武漢市珞喻路129号 郵編:430079 
電話:027-68778381,68778284,68778296 傳真:027-68778893    郵箱:sres@whu.edu.cn

Baidu
sogou