首頁  >  科研動态  >  正文
科研動态
鄧萌傑(博士生)、李曉曉、成海容的論文在SCIENCE OF THE TOTAL ENVIRONMENT 刊出
發布時間:2024-04-07 17:01:53     發布者:易真     浏覽次數:

标題: Nitrogen and oxygen isotope characteristics, formation mechanism, and source apportionment of nitrate aerosols in Wuhan, Central China

作者: Deng, MJ (Deng, Mengjie); Wang, CM (Wang, Cimou); Yang, CM (Yang, Chunmian); Li, XX (Li, Xiaoxiao); Cheng, HR (Cheng, Hairong)

來源出版物: SCIENCE OF THE TOTAL ENVIRONMENT : 921 文獻号: 170715 DOI: 10.1016/j.scitotenv.2024.170715 Early Access Date: FEB 2024 Published Date: 2024 APR 15

摘要: Understanding the sources and formation mechanisms of nitrate in PM2.5 is important for effective and precise prevention and control of particulate matter pollution. In this study, we detected stable nitrogen and oxygen isotope signatures of NO- 3 (expressed as 815N -NO- 3 and 818O-NO3 ) in PM2.5 samples in Wuhan, the largest city in central China. The sources and formation pathways of NO3  were quantitatively analyzed using the modified version of the Bayesian isotope mixing (MixSIR) model, and the regional transport characteristics of NO3  were analyzed using the hybrid single-particle Lagrangian integrated trajectory (HYSPLIT) model and concentrationweighted trajectory (CWT) method. The results showed that NO3  significantly contributed to the ambient PM2.5 pollution and its driving effect increased with the gradient of pollution level. The average 815N-NO3  and 818O- NO3  values were 4.7 +/- 0.9 %o and 79.7 +/- 2.9 %o, respectively. 815N-NO3  and 818O-NO3  were more enriched in winter and increased dramatically in heavily polluted days. The reaction pathway of NO2 + OH dominated nitrate formation in summer, while the reaction pathway of N2O5+ H2O dominated in other seasons and contributed more in polluted days than clean days. The contributions of vehicle emission, coal combustion, biomass burning, biogenic soil emission, and ship emission sources to NO3  were 26.4 %, 23.4 %, 22.8 %, 15.3 %, and 12.1 %, respectively. In addition to local emissions, air mass transport from the northern China had a significant impact on particulate NO3  in Wuhan. Overall, we should pay special attention to vehicle and ship emissions and winter coal combustion emissions in future policymaking.

作者關鍵詞: Nitrate aerosol; Oxygen isotopes; Nitrogen isotopes; Aerosol formation pathways; Source apportionment

地址: [Deng, Mengjie; Wang, Cimou; Yang, Chunmian; Li, Xiaoxiao; Cheng, Hairong] Wuhan Univ, Sch Resource & Environm Sci, Wuhan 430072, Peoples R China.

通訊作者地址: Li, XX; Cheng, HR (通訊作者)Wuhan Univ, Sch Resource & Environm Sci, Wuhan 430072, Peoples R China.

電子郵件地址: lixiaoxiao@whu.edu.cn; chenghr@whu.edu.cn

影響因子:9.8


信息服務
學院網站教師登錄 學院辦公電話 學校信息門戶登錄

版權所有 © 88858cc永利官网
地址:湖北省武漢市珞喻路129号 郵編:430079 
電話:027-68778381,68778284,68778296 傳真:027-68778893    郵箱:sres@whu.edu.cn

Baidu
sogou