标題: Efficient molten salt CO<sub>2</sub> capture and selective electrochemical transformation processes toward carbon neutrality: advances, challenges, and prospects
作者: Deng, BW (Deng, Bowen); Yin, HY (Yin, Huayi); Du, KF (Du, Kaifa); Wang, DH (Wang, Dihua)
來源出版物: SCIENCE CHINA-CHEMISTRY DOI: 10.1007/s11426-023-1826-3 提前訪問日期: OCT 2023
摘要: Atmospheric carbon dioxide (CO2) concentration has reached record levels due to excessive anthropogenic CO2 emissions from massive industrial productions. Renewable-energy-driven CO2 electroreduction is an effective method of directly converting CO2 into various value-added chemicals or materials without subsequent geological disposal treatment. Owing to their promising thermal stability, wide electrochemical window, tunable oxo-basicity, and nontoxic nature, molten salt electrolytes endow intrinsic advantages, such as fast CO2 absorption and selective electrochemical transformation, among different electrolyte species, wherein advanced carbon materials, CO, and hydrocarbons can be generated at relatively high current densities. Herein, we review the recent advances in molten salt CO2 capture and electrochemical transformation (MSCC-ET) technologies, including reaction mechanisms, CO2 absorption kinetics, electrode reaction kinetics, and product selectivity. This review highlights feasible strategies for regulating nanostructures, carbon product crystallinity, energy efficiency, overall CO2 conversion efficiency, and MSCC-ET adaptability toward practical flue gases. Moreover, suitable cost-effective inert anode candidates for the oxygen evolution reaction are discussed.
作者關鍵詞: carbon dioxide; electroreduction; CO2 capture; molten salt; electrode reaction; energy efficiency
地址: [Deng, Bowen; Yin, Huayi; Du, Kaifa; Wang, Dihua] Wuhan Univ, Sch Resource & Environm Sci, Hubei Int Sci & Technol Cooperat Base Sustainable, Wuhan 430072, Peoples R China.
通訊作者地址: Wang, DH (通訊作者),Wuhan Univ, Sch Resource & Environm Sci, Hubei Int Sci & Technol Cooperat Base Sustainable, Wuhan 430072, Peoples R China.
電子郵件地址: wangdh@whu.edu.cn
影響因子:9.6
版權所有 © 88858cc永利官网
地址:湖北省武漢市珞喻路129号 郵編:430079
電話:027-68778381,68778284,68778296 傳真:027-68778893 郵箱:sres@whu.edu.cn