标題: Electrolyte engineering for efficient molten-carbonate electrolysis of CO2
作者: Yang, ZS (Yang, Zhengshan); Yin, HY (Yin, Huayi); Deng, BW (Deng, Bowen); Wang, DH (Wang, Dihua)
來源出版物: CHEMICAL ENGINEERING JOURNAL 卷: 473 文獻号: 145146 DOI: 10.1016/j.cej.2023.145146 出版年: OCT 1 2023
摘要: Molten carbonate electrolysis cells (MCEC) are a promising electrochemical CO2 capture and conversion process. However, the CO2 absorption and energy efficiencies are limited by the sluggish CO2 absorption kinetics and high electrode overpotentials. Herein, we propose an electrolyte engineering strategy to improve the CO2 absorption rate and reduce overpotentials at both the anode and the cathode. When BO33-was added into molten Li2CO3Na2CO3-K2CO3, the CO2 adsorption efficiency was improved from 3.3% to 60%, the overpotential was reduced by - 567 mV at the cathode and by - 238 mV at the anode under 200 mA cm-2. Accordingly, the energy efficiency reached 76.2 % at 650 & DEG;C. The improved CO2 absorption and energy efficiencies are thanks to the BO33that changes the thermodynamic properties of the molten carbonate, i.e., the BO33--CO32- complex reduces the energy barrier for the reduction of CO32- at the cathode and for the liberation of O2- that can be oxidized at a lower potential than CO32- at the anode. Therefore, the electrolyte engineering is an effective strategy for designing high-temperature CO2 electrolyzers with high CO2 absorption and energy efficiency.
作者關鍵詞: Molten carbonate; CO 2 capture; CO 2 RR; Electrolyte engineering; Borate
KeyWords Plus: ELECTROREDUCTION; DIOXIDE; REDUCTION; NANOTUBES; CAPTURE; OPTIMIZATION; TEMPERATURE; CONVERSION; DESIGN; OXIDES
地址: [Yang, Zhengshan; Yin, Huayi; Deng, Bowen; Wang, Dihua] Wuhan Univ, Sch Resource & Environm Sci, Hubei Int Sci & Technol Cooperat Base Sustainable, Wuhan 430072, Peoples R China.
通訊作者地址: Yin, HY; Wang, DH (通訊作者),Wuhan Univ, Sch Resource & Environm Sci, Hubei Int Sci & Technol Cooperat Base Sustainable, Wuhan 430072, Peoples R China.
電子郵件地址: yinhuayi@whu.edu.cn; wangdh@whu.edu.cn
影響因子:15.1
版權所有 © 88858cc永利官网
地址:湖北省武漢市珞喻路129号 郵編:430079
電話:027-68778381,68778284,68778296 傳真:027-68778893 郵箱:sres@whu.edu.cn