首頁  >  科研動态  >  正文
科研動态
陳玥君(碩士生)、陳玉敏的論文在REMOTE SENSING 刊出
發布時間:2023-08-30 14:58:58     發布者:易真     浏覽次數:

标題: A Multifactor Eigenvector Spatial Filtering-Based Method for Resolution-Enhanced Snow Water Equivalent Estimation in the Western United States

作者: Chen, YJ (Chen, Yuejun); Chen, YM (Chen, Yumin); Wilson, JP (Wilson, John P.); Yang, JX (Yang, Jiaxin); Su, H (Su, Heng); Xu, R (Xu, Rui)

來源出版物: REMOTE SENSING : 15 : 15 文獻号: 3821 DOI: 10.3390/rs15153821 出版年: AUG 2023

摘要: Accurate snow water equivalent (SWE) products are vital for monitoring hydrological processes and managing water resources effectively. However, the coarse spatial resolution (typically at 25 km from passive microwave remote sensing images) of the existing SWE products cannot meet the needs of explicit hydrological modeling. Linear regression ignores the spatial autocorrelation (SA) in the variables, and the measure of SA in the data assimilation algorithm is not explicit. This study develops a Resolution-enhanced Multifactor Eigenvector Spatial Filtering (RM-ESF) method to estimate daily SWE in the western United States based on a 6.25 km enhanced-resolution passive microwave record. The RM-ESF method is based on a brightness temperature gradience algorithm, incorporating not only factors including geolocation, environmental, topographical, and snow features but also eigenvectors generated from a spatial weights matrix to take SA into account. The results indicate that the SWE estimation from the RM-ESF method obviously outperforms other SWE products given its overall highest correlation coefficient (0.72) and lowest RMSE (56.70 mm) and MAE (43.88 mm), compared with the AMSR2 (0.33, 131.38 mm, and 115.45 mm), GlobSnow3 (0.50, 100.03 mm, and 83.58 mm), NCA-LDAS (0.48, 98.80 mm, and 81.94 mm), and ERA5 (0.65, 67.33 mm, and 51.82 mm), respectively. The RM-ESF model considers SA effectively and estimates SWE at a resolution of 6.25 km, which provides a feasible and efficient approach for SWE estimation with higher precision and finer spatial resolution.

作者關鍵詞: snow water equivalent estimation; resolution-enhanced; eigenvector spatial filtering; passive microwave brightness temperature; western United States

KeyWords Plus: ARTIFICIAL NEURAL-NETWORK; ENVIRONMENTAL-FACTORS; DEPTH RETRIEVAL; TREE MODELS; COVER; MOUNTAINS; AUTOCORRELATION; PARAMETERS; SCATTERING; ALGORITHM

地址: [Chen, Yuejun; Chen, Yumin; Su, Heng; Xu, Rui] Wuhan Univ, Sch Resource & Environm Sci, Wuhan 430079, Peoples R China.

[Wilson, John P.] Univ Southern Calif, Spatial Sci Inst, Los Angeles, CA 90089 USA.

[Yang, Jiaxin] Guangzhou Urban Planning & Design Survey Res Inst, Guangzhou 510060, Peoples R China.

通訊作者地址: Chen, YM (通訊作者)Wuhan Univ, Sch Resource & Environm Sci, Wuhan 430079, Peoples R China.

電子郵件地址: chenyuejun@whu.edu.cn; ymchen@whu.edu.cn; jpwilson@usc.edu; yangjiaxin@whu.edu.cn; 2017301110076@whu.edu.cn; 2022202050059@whu.edu.cn

影響因子:5


信息服務
學院網站教師登錄 學院辦公電話 學校信息門戶登錄

版權所有 © 88858cc永利官网
地址:湖北省武漢市珞喻路129号 郵編:430079 
電話:027-68778381,68778284,68778296 傳真:027-68778893    郵箱:sres@whu.edu.cn

Baidu
sogou