首頁  >  科研動态  >  正文
科研動态
博士生範金航的論文在METALLURGICAL AND MATERIALS TRANSACTIONS B-PROCESS METALLURGY AND MATERIALS PROCESSING SCIENCE 刊出
發布時間:2018-10-12 15:16:35     發布者:易真     浏覽次數:

标題:An Efficient Electrolytic Preparation of MAX-Phased Ti-Al-C

作者: Fan, JH (Fan, Jinhang); Tang, DD (Tang, Dingding); Mao, XH (Mao, Xuhui); Zhu, H (Zhu, Hua); Xiao, W (Xiao, Wei); Wang, DH (Wang, Dihua)  來源出版物:METALLURGICAL AND MATERIALS TRANSACTIONS B-PROCESS METALLURGY AND MATERIALS PROCESSING SCIENCE  卷:49 期:5 頁碼: 2770-2778       DOI10.1007/s11663-018-1304-x        出版年:  OCT 2018

摘要:Large-scale deployment of MAX-phased Ti-Al-C with intriguing mechanical and physicochemical properties is significantly retarded by its harsh preparation conditions, in which costly precursors, high temperature and non-atmospheric pressure are generally imperative. We herein report an efficient electrolytic preparation of MAX-phased Ti-Al-C by direct electro-reduction of solid TiO2-Al2O3-C in molten CaCl2 at 1223 K under normal pressure. Homogeneous layered Ti3AlC2 with an oxygen content of 4300 ppm is prepared under a voltage of 3 V between the solid cathode and graphite anode for only 4 hours. The electro-reduction of TiO2-Al2O3-C exhibits a much faster speed compared with the electrolysis employing TiO2, TiO2-C and TiO2-Al2O3 as the precursors. Time-dependent electrolysis indicates that TiC (x) O (y) is the main intermediate. The generation of refractory and highly conducting TiC (x) O (y) intermediate enhances the reduction. Density functional theory simulations show a weak affinity towards oxygen of the resulting Ti3AlC2, which is beneficial to fast and thorough deoxidation. The formation of a layered structure of Ti3AlC2 is attributed to the template effect of the precursory graphite. By simply varying the precursory stoichiometry, layered Ti2AlC is also prepared. The present protocol featuring affordable feedstock, low temperature, ambient pressure, high energy efficiency and controllable stoichiometry is promising for large-scale application.

入藏号:WOS:000444765500053

文獻類型:Article

語種:English

關鍵詞:MOLTEN CALCIUM-CHLORIDE; DIRECT ELECTROCHEMICAL REDUCTION; M(N+1)AX(N) PHASES; ION BATTERIES; TI3ALC2; TITANIUM; SALTS; CARBIDE; ELECTROSYNTHESIS; COMPOSITES

通訊作者地址: Xiao, W (reprint author), Wuhan Univ, Sch Resource & Environm Sci, Hubei Int Sci & Technol Cooperat Base Sustainable, Wuhan 430072, Peoples R China.

電子郵件地址:gabrielxiao@whu.edu.cn; wangdh@whu.edu.cn

地址:  [Fan, Jinhang; Tang, Dingding; Mao, Xuhui; Zhu, Hua; Xiao, Wei; Wang, Dihua] Wuhan Univ, Sch Resource & Environm Sci, Hubei Int Sci & Technol Cooperat Base Sustainable, Wuhan 430072, Peoples R China.

影響因子:1.834


信息服務
學院網站教師登錄 學院辦公電話 學校信息門戶登錄

版權所有 © 88858cc永利官网
地址:湖北省武漢市珞喻路129号 郵編:430079 
電話:027-68778381,68778284,68778296 傳真:027-68778893    郵箱:sres@whu.edu.cn

Baidu
sogou