标題:Synthesis of novel Cu2O/BiOCl heterojunction nanocomposites and their enhanced photocatalytic activity under visible light作者:Cao, Chunhua; Xiao, Ling; Chen, Chunhua; Cao, Qihua
來源出版物:APPLIED SURFACE SCIENCE 卷:357 頁:1171-1179 DOI:10.1016/j.apsusc.2015.09.121 A 出版年:DEC 1 2015
摘要:Novel Cu2O/BiOCl photocatalyst with unique 3D/2D structure and enhanced visible-light photocatalytic activity was constructed using a facile low-temperature liquid-phase method. The microstructure and properties of Cu2O/BiOCl composites were characterized by XRD, FT-IR, FESEM, HRTEM, BET and UV-vis/DRS. With dye X-3B as a model pollutant, the adsorption and visible-light photocatalytic activities of Cu2O/BiOCl composites were investigated, and the photocatalysis mechanism was explored. The results showed that the staggered spaces and edges of BiOCl nanosheets with about 40 nm thickness were inlaided with some Cu2O sub-microspheres, and the heterojunction structures were formed at the interface between BiOCl nanosheets and Cu2O sub-microspheres. Compared with pure Cu2O, pure BiOCl and the mechanical mixture of both, Cu2O/BiOCl composites exhibited markedly improved efficiency for photocatalytic degradation of X-3B. The unique 3D/2D and heterojunction structure in composites could increase the pore volume and BET specific surface area and improve the adsorption properties, on the other hand, it could efficiently enhance the charge carriers separation and migration. The nanocomposites with Cu2O/BiOCl molar ratio of 1:4 showed the highest photocatalytic activity. The effects of various scavengers on photocatalytic efficiency revealed that the degradation of X-3B was mainly initiated by reactive radial O-center dot(2)- and h(+).
入藏号:WOS:000366216900152
文獻類型:Article
語種:English
作者關鍵詞:Cu2O, BiOCl, Heterojunction, Photocatalytic, Visible light
擴展關鍵詞:SINGLE-CRYSTALLINE NANOSHEETS; MICROWAVE-ASSISTED SYNTHESIS; IN-SITU PREPARATION; P-N HETEROJUNCTION; DEGRADATION; BIOCL; ADSORPTION; TIO2; NANOPARTICLES; KINETICS
通訊作者地址:Xiao, Ling; Wuhan Univ, Sch Resource & Environm Sci, Wuhan 430072, Peoples R China.
電子郵件地址:xiaoling9119@whu.edu.cn
地址:
[Cao, Chunhua; Xiao, Ling; Cao, Qihua]Wuhan Univ, Sch Resource & Environm Sci, Wuhan 430072, Peoples R China.
[Cao, Chunhua; Chen, Chunhua] Jianghan Univ, Coll Chem & Environm Engn, Minist Educ, Key Lab Optoelect Chem Mat & Devices, Wuhan 430056, Peoples R China.
研究方向:Chemistry; Materials Science; Physics
ISSN:0169-4332
eISSN:1873-5584
影響因子(2014):2.711
版權所有 © 88858cc永利官网
地址:湖北省武漢市珞喻路129号 郵編:430079
電話:027-68778381,68778284,68778296 傳真:027-68778893 郵箱:sres@whu.edu.cn