首頁  >  科研動态  >  正文
科研動态
碩士生梁川州的論文在WATER RESEARCH刊出
發布時間:2016-06-27 15:36:38     發布者:yz     浏覽次數:

标題:Mechanism for the primary transformation of acetaminophen in a soil/water system作者:Liang, Chuanzhou; Lan, Zhonghui; Zhang, Xu; Liu, Yingbao

來源出版物:WATER RESEARCH 卷:98 頁碼:215-224 DOI: 10.1016/j.watres.2016.04.027 出版年:JUL 1 2016

摘要:The transformation of acetaminophen (APAP) in a soil/water system was systematically investigated by a combination of kinetic studies and a quantitative analysis of the reaction intermediates. Biotransformation was the predominant pathway for the elimination of APAP, whereas hydrolysis or other chemical transformation, and adsorption processes made almost no contribution to the transformation under a dark incubation. Bacillus aryabhattai strain 1-Sj-5-2-5-M, Klebsiella pneumoniae strain 5001, and Bacillus subtilis strain HJ5 were the main bacteria identified in the biotransformation of APAP. The soil-to-water ratio and soil preincubation were able to alter the transformation kinetic pattern. Light irradiation promoted the overall transformation kinetics through enhanced biotransformation and extra photosensitized chemical reactions. The transformation pathways were strongly dependent on the initial concentration of APAP. The main primary transformation products were APAP oligomers and p-amino phenol, with the initial addition of 26.5 and 530 M APAP, respectively. APAP oligomers accounted for more than 95% of transformed APAP, indicating that almost no bound residues were generated through the transformation of APAP in the soil/water system. The potential environmental risks of APAP could increase following the transformation of APAP in the soil/water system because of the higher toxicity of the transformation intermediates.

入藏号:WOS:000376805500024

文獻類型:Article

語種:English

作者關鍵詞:Acetaminophen, Soil/water, Biotransformation, Polymerization

擴展關鍵詞:ORGANIC-MATTER; EMERGING CONTAMINANTS; AQUEOUS-SOLUTIONS; SURFACE WATERS; SOIL; BIODEGRADATION; DEGRADATION; KINETICS; PHARMACEUTICALS; AMINOPHENOL

通訊作者地址:Zhang, X (reprint author), Wuhan Univ, Sch Resources & Environm Sci, Wuhan 430079, Peoples R China.

Liu, YB (reprint author), Yangtze Univ, Coll Life Sci, Jingzhou 434025, Peoples R China.

電子郵件地址:xuzhangwhu@gmail.com; liuyingbao2006@163.com

地址:

[Liang, Chuanzhou; Lan, Zhonghui; Zhang, Xu] Wuhan Univ, Sch Resources & Environm Sci, Wuhan 430079, Peoples R China.

[Liu, Yingbao] Yangtze Univ, Coll Life Sci, Jingzhou 434025, Peoples R China.

研究方向:Engineering; Environmental Sciences & Ecology; Water Resources

ISSN:0043-1354

影響因子:5.991

信息服務
學院網站教師登錄 學院辦公電話 學校信息門戶登錄

版權所有 © 88858cc永利官网
地址:湖北省武漢市珞喻路129号 郵編:430079 
電話:027-68778381,68778284,68778296 傳真:027-68778893    郵箱:sres@whu.edu.cn

Baidu
sogou