首頁  >  科研動态  >  正文
科研動态
博士生吳捷的論文在DESALINATION AND WATER TREATMENT刊出
發布時間:2013-01-17 16:05:06     發布者:admin     浏覽次數:

标題:Decolorization of CI Reactive Black 8 by electrochemical process with/without ultrasonic irradiation

作者:Wu, J(Wu, Jie); Liu, F(Liu, Fang); Zhang, H(Zhang, Hui); Zhang, JH(Zhang, Jianhua); Li, L(Li, Lu)

來源出版物:DESALINATION AND WATER TREATMENT卷:44 期:1-3 頁:3-43 出版年:JUN 2012

摘要:The decolorization of CI Reactive Black 8 by anodic oxidation with Ti/RuO2-IrO2 anode and stainless steel cathode was carried out in an electrochemical cell with or without ultrasonic irradiation. The effect of current density, initial pH value, initial dye concentration and electrolyte concentration on the decolorization rate of CI Reactive Black 8 in both two processes was investigated. The results showed that the decolorization followed pseudo-first-order kinetics. The decolorization rate increased with increasing the current density, but decreased with increasing the initial dye concentration and electrolyte concentration. The acidic condition favored CI Reactive Black 8 decolorization. The presence of ultrasonic irradiation could enhance electrochemical oxidation (EC) of CI Reactive Black 8, and the enhancement effect tended to increase with increasing the initial dye concentration, pH value, and electrolyte concentration, but decrease with increasing the current density. In the presence of ultrasonic irradiation, a 32.4% COD removal efficiency was achieved after 90 min EC when initial concentration was 100 mg l(-1), current density was 31.7 mA cm(-2), initial pH value was 5.4, the electrolyte concentration was 0.1 mol l(-1) and the acoustic power was 100 W l(-1). The specific oxygen uptake rate (SOUR) tests showed that SOUR decreased during the first 15 min, but it increased with reaction time afterwards.

文獻類型:Article

語種:English

作者關鍵詞:Sonoelectrochemistry, Anodic oxidation, Ti/RuO2-IrO2 anode, CI Reactive Black 8, Decolorization, COD

擴展關鍵詞:BORON-DOPED DIAMOND; AQUEOUS-SOLUTION; WASTE-WATER; ANODIC-OXIDATION; ELECTRO-FENTON; EXPERIMENTAL PARAMETERS; DEGRADATION; ACID; MINERALIZATION; SYSTEM

通訊作者地址:Zhang, H (通訊作者),Wuhan Univ, Dept Environm Engn, POB C319,Luoyu Rd 129, Wuhan 430079, Peoples R China

地址:

[Wu, Jie; Liu, Fang; Zhang, Hui; Zhang, Jianhua; Li, Lu]Wuhan Univ, Dept Environm Engn, Wuhan 430079, Peoples R China

電子郵件地址:eeng@whu.edu.cn

學科類别:Engineering; Water Resources

ISSN:1944-3994

信息服務
學院網站教師登錄 學院辦公電話 學校信息門戶登錄

版權所有 © 88858cc永利官网
地址:湖北省武漢市珞喻路129号 郵編:430079 
電話:027-68778381,68778284,68778296 傳真:027-68778893    郵箱:sres@whu.edu.cn

Baidu
sogou