首頁  >  科學研究  >  科研成果  >  正文
科研成果
碩士生王媛,李進軍的論文在JOURNAL OF COLLOID AND INTERFACE SCIENCE刊出
發布時間:2021-11-01 10:20:17     發布者:易真     浏覽次數:

标題: Oxide of porous graphitized carbon as recoverable functional adsorbent that removes toxic metals from water

作者: Wang, Y (Wang, Yuan); Cai, MJ (Cai, Minjuan); Chen, T (Chen, Tao); Pan, F (Pan, Feng); Wu, F (Wu, Feng); You, ZX (You, Zhixiong); Li, JJ (Li, Jinjun)

來源出版物: JOURNAL OF COLLOID AND INTERFACE SCIENCE : 606 : 983-993 DOI: 10.1016/j.jcis.2021.08.082 子輯: 2 出版年: JAN 15 2022

摘要: The numerous oxygenated functional groups on graphite oxide (GO) make it a promising adsorbent for toxic heavy metals in water. However, the GO prepared from natural graphite is water-soluble after exfoliation, making its recovery for reuse extremely difficult. In this study, porous graphitized carbon (PGC) was oxidized to fabricate a GO-like material, PGCO. The PGCO showed an O/C molar ratio of 0.63, and 8.4% of the surface carbon species were carboxyl, exhibiting enhanced oxidation degree compared to GO. The small PGCO sheets were intensely aggregated chemically, yielding an insoluble solid easily separable from water by sedimentation or filtration. Batch adsorption experiments demonstrated that the PGCO afforded significantly higher removal efficiencies for heavy metals than GO, owing to the former's greater functionalization with oxygenated groups. An isotherm study suggested that the adsorption obeyed the Langmuir model, and the derived maximum adsorption capacities for Cr3+, Pb2+, Cu2+, Cd2+, Zn2+, and Ni2+ were 119.6, 377.1, 99.1, 65.2, 53.0, and 58.1 mg/g, respectively. Furthermore, the spent PGCO was successively regenerated by acid treatment. The results of the study indicate that PGCO could be an alternative adsorbent for remediating toxic metal-contaminated waters. (C) 2021 Elsevier Inc. All rights reserved.

作者關鍵詞: Heavy metal; Adsorption; Water treatment; Porous graphitized carbon; Graphene oxide; Functionalized carbon

地址: [Wang, Yuan; Cai, Minjuan; Chen, Tao; Pan, Feng; Wu, Feng; You, Zhixiong; Li, Jinjun] Wuhan Univ, Sch Resource & Environm Sci, Wuhan 430079, Peoples R China.

通訊作者地址: Li, JJ (通訊作者)Wuhan Univ, Sch Resource & Environm Sci, Wuhan 430079, Peoples R China.

電子郵件地址: lijinjun@whu.edu.cn

影響因子:8.128

 

信息服務
學院網站教師登錄 學院辦公電話 學校信息門戶登錄

版權所有 © 88858cc永利官网
地址:湖北省武漢市珞喻路129号 郵編:430079 
電話:027-68778381,68778284,68778296 傳真:027-68778893    郵箱:sres@whu.edu.cn

Baidu
sogou