首頁  >  科學研究  >  科研成果  >  正文
科研成果
博士生李嘉豪的論文在SCIENCE OF THE TOTAL ENVIRONMENT 刊出
發布時間:2021-10-15 14:26:35     發布者:易真     浏覽次數:

标題: Passivation of multiple heavy metals in lead-zinc tailings facilitated by straw biochar-loaded N-doped carbon aerogel nanoparticles: Mechanisms and microbial community evolution

作者: Li, JH (Li, Jiahao); Xia, CG (Xia, Chenggong); Cheng, R (Cheng, Rong); Lan, JR (Lan, Jirong); Chen, FY (Chen, Fangyuan); Li, XL (Li, Xuli); Li, SY (Li, Shiyao); Chen, J (Chen, Jiaao); Zeng, TY (Zeng, Tianyu); Hou, HB (Hou, Haobo)

來源出版物: SCIENCE OF THE TOTAL ENVIRONMENT :803 DOI: 10.1016/j.scitotenv.2021.149866 出版年: JAN 10 2022

摘要: Heavy metal (HM) soil pollution has become an increasingly serious problem with the development of industries. Application of biochar in HMs remediation from contaminated environment has attracted considerable research attention during the past decade. Although the mechanism of HMs passivation with biochar has been investigated, effects and mechanisms of interaction among soil-indigenous microbes and novel carbon matrix composites for HMs adsorption and passivation are still unclear. Four different biochar-loaded aerogels, namely, BNCA-1-600, BNCA-1-900, BNCA-2-600, and BNCA-2-900, were synthesized in this study. Adsorption capacity of four kinds of synthetic materials and two types of contrast biochars (BC600 and BC900) to HMs in aqueous solution, passivation capacity of HMs in soil, and effects on soil organic matter and microbial community were explored. Results showed that BNCA-2-900 exhibits excellent adsorption property and a maximum removal capacity of 205.07 mg.g(-1) at 25 degrees C for Pb(II), 105.56 mg.g(-1) for Cd(II), and 137.89 mg.g(-1) for Zn(II). Leaching concentration of HMs in contaminated soil can meet the national standard of China (GB/T 5085.3-2007) within 120 days. Results of this study confirmed that the additive BNCA-2-900 and coexistence of indigenous microorganisms can effectively reduce bioavailability of HMs. Another potential mechanism may be to remove the passivation ofHMs by porous structure and surface functional groups as well as improve the content of organic matter and microbial abundance. The research results may provide a novel perceptive for the development of functional materials and strategies for eco-friendly and sustainable multiple HMs remediation in contaminated soil and water by using a combination of carbon matrix composites and soil-indigenous microorganisms. (C) 2021 Published by Elsevier B.V.作者關鍵詞: Heavy metals; Passivation; Nanoparticles; Biochar; Microbial diversity

地址: [Li, Jiahao; Cheng, Rong; Lan, Jirong; Chen, Fangyuan; Li, Xuli; Li, Shiyao; Chen, Jiaao; Zeng, Tianyu; Hou, Haobo] Wuhan Univ, Sch Resource & Environm Sci, Wuhan 430072, Hubei, Peoples R China.

[Xia, Chenggong] Cent Southern Safety & Environm Technol Inst Co L, Wuhan 430071, Hubei, Peoples R China.

[Li, Jiahao; Zeng, Tianyu; Hou, Haobo] Wuhan Univ, Zhaoqing Environm Technol Res Inst, Zhaoqing 526200, Guangdong, Peoples R China.

通訊作者地址: Zeng, TY; Hou, HB (通訊作者)Wuhan Univ, Zhaoqing Environm Technol Res Inst, Zhaoqing 526200, Guangdong, Peoples R China.

電子郵件地址: zty_0209@whu.edu.cn; houhb@whu.edu.cn

影響因子:7.963


信息服務
學院網站教師登錄 學院辦公電話 學校信息門戶登錄

版權所有 © 88858cc永利官网
地址:湖北省武漢市珞喻路129号 郵編:430079 
電話:027-68778381,68778284,68778296 傳真:027-68778893    郵箱:sres@whu.edu.cn

Baidu
sogou