首頁  >  科學研究  >  科研成果  >  正文
科研成果
陳玉敏、碩士生譚黃元的論文在 ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH 刊出
發布時間:2021-09-01 10:57:31     發布者:易真     浏覽次數:

标題: Self-adaptive bandwidth eigenvector spatial filtering model for estimating PM2.5 concentrations in the Yangtze River Delta region of China

作者: Tan, HY (Tan, Huangyuan); Chen, YM (Chen, Yumin); Wilson, JP (Wilson, John P.); Zhou, AN (Zhou, Annan); Chu, TY (Chu, Tianyou)

來源出版物: ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH DOI: 10.1007/s11356-021-15196-4 提前訪問日期: JUL 2021

摘要: PM2.5 concentrations are commonly estimated using geographically weighted regression (GWR) models, but these models may suffer from multi-collinearity and over-focus on local feature problems. To overcome these shortcomings, a self-adaptive bandwidth eigenvector spatial filtering (SA-ESF) model utilizing the golden section search (GO-ESF) and genetic algorithm (GA-ESF) was proposed. The SA-ESF model was applied to estimate ground PM2.5 concentrations in the Yangtze River Delta (YRD) region of China both seasonally and annually from December 2015 to November 2016 using remotely sensing data, factory locations, and road networks. The results of the original eigenvector spatial filtering (ESF), GO-ESF, GA-ESF, and GWR models show that the GA-ESF model offers better performance and exhibits a better average adjusted R-2 which is 26.6%, 15.3%, and 10.8% higher than for the ESF, GO-ESF, and GWR models, respectively. We next calculated stochastic site indicators that can describe characteristics of regional concentration from interpolated concentration maps derived from the GA-ESF and GWR models. The concentration maps and stochastic site indicators point to major differences in the PM2.5 concentrations in mountainous areas. There are notably high concentrations in those areas using the GWR model, in contrast with the GA-ESF results, indicating that there may be overfitting problems using the GWR model. Overall, the proposed SA-ESF model with the genetic algorithm technique can capture both global and local features and achieve promising results.

入藏号: WOS:000673836400016

PubMed ID: 34268695

語言: English

文獻類型: Article; Early Access

作者關鍵詞: PM2.5; Eigenvector spatial filtering; Stochastic site indicators; Geographically weighted regression; Genetic algorithm; Yangtze River Delta region

地址: [Tan, Huangyuan; Chen, Yumin; Zhou, Annan; Chu, Tianyou] Wuhan Univ, Sch Resource & Environm Sci, 129 Luoyu Rd, Wuhan 430079, Hubei, Peoples R China.

[Wilson, John P.] Univ Southern Calif, Spatial Sci Inst, Los Angeles, CA 90089 USA.

通訊作者地址: Chen, YM (通訊作者)Wuhan Univ, Sch Resource & Environm Sci, 129 Luoyu Rd, Wuhan 430079, Hubei, Peoples R China.

電子郵件地址: tanhuangyuan@whu.edu.cn; ymchen@whu.edu.cn; jpwilson@usc.edu; 2016301110183@whu.edu.cn; chutianyou@whu.edu.cn

影響因子:4.223


信息服務
學院網站教師登錄 學院辦公電話 學校信息門戶登錄

版權所有 © 88858cc永利官网
地址:湖北省武漢市珞喻路129号 郵編:430079 
電話:027-68778381,68778284,68778296 傳真:027-68778893    郵箱:sres@whu.edu.cn

Baidu
sogou