首頁  >  科學研究  >  科研成果  >  正文
科研成果
李威、汪的華、碩士生楊蕙萌的論文在 WASTE MANAGEMENT 刊出
發布時間:2021-07-07 08:44:41     發布者:易真     浏覽次數:

标題: Direct recovery of degraded LiCoO2 cathode material from spent lithium-ion batteries: Efficient impurity removal toward practical applications

作者: Yang, HM (Yang, Huimeng); Deng, BW (Deng, Bowen); Jing, XY (Jing, Xiaoyun); Li, W (Li, Wei); Wang, DH (Wang, Dihua)

來源出版物: WASTE MANAGEMENT : 129 : 85-94 DOI: 10.1016/j.wasman.2021.04.052 出版年: JUN 15 2021

摘要: Regenerating cathode material from spent lithium-ion batteries (LIBs) permits an effective approach to resolve resource shortage and environmental pollution in the increasing battery industry. Directly renovating the spent cathode materials is a promising way, but it is still challenging to efficiently remove all of the complex impurities (such as binder, carbon black, graphite and current collectors) without destroying the material structure in the electrode. Herein, a facile strategy to directly remove these impurities and simultaneously repair the degraded LiCoO2 by a target healing method is reported. Specifically, by using an optimized molten salt system of LiOH-KOH (molar ratio of 3:7) where LiNO3 and O-2 both serve as oxidants, the impurities can be completely removed, while the structure, composition and morphology of degraded LiCoO2 can be successfully repaired to commercial level based on a two-stage heating process (300 degrees C for 8 h and 500 degrees C for 16 h, respectively), resulting in a high recovery rate of approximately 100% for cathode material. More importantly, the regenerated LiCoO2 exhibits a high reversible capacity, good cycling stability and excellent rate capability, which are comparable with commercial LiCoO2. This work demonstrates an efficient approach to recycle and reuse advanced energy materials. (C) 2021 Elsevier Ltd. All rights reserved.

入藏号: WOS:000660687200009

PubMed ID: 34044320

語言: English

文獻類型: Article

作者關鍵詞: Li-ion batteries; Cathode material; Recycling; Regeneration; Molten salts

地址: [Yang, Huimeng; Deng, Bowen; Jing, Xiaoyun; Li, Wei; Wang, Dihua] Wuhan Univ, Sch Resource & Environm Sci, Hubei Int Sci & Technol Cooperat Base Sustainable, Wuhan 430072, Peoples R China.

通訊作者地址: Li, W; Wang, DH (通訊作者)Wuhan Univ, Sch Resource & Environm Sci, Hubei Int Sci & Technol Cooperat Base Sustainable, Wuhan 430072, Peoples R China.

電子郵件地址: wlimeel@whu.edu.cn; wangdh@whu.edu.cn

影響因子:7.145


信息服務
學院網站教師登錄 學院辦公電話 學校信息門戶登錄

版權所有 © 88858cc永利官网
地址:湖北省武漢市珞喻路129号 郵編:430079 
電話:027-68778381,68778284,68778296 傳真:027-68778893    郵箱:sres@whu.edu.cn

Baidu
sogou