标題: Mechanical agitation accelerated ultrasonication for wastewater treatment: Sustainable production of hydroxyl radicals
作者: Nie, G (Nie, Gang); Hu, KS (Hu, Kunsheng); Ren, W (Ren, Wei); Zhou, P (Zhou, Peng); Duan, XG (Duan, Xiaoguang); Xiao, L (Xiao, Ling); Wang, SB (Wang, Shaobin)
來源出版物: WATER RESEARCH 卷: 198 文獻号: 117124 DOI: 10.1016/j.watres.2021.117124 出版年: JUN 15 2021
摘要: Low efficiency in energy conversion has long been the bottleneck in sonochemistry-based water treatment technologies. In this work, we reported a simple and efficient strategy by introducing mechanical agitation into a low powered ultrasonic system to facilitate the production of cavitation bubbles. The coupled system remarkably intensifies the evolution of reactive oxygen species (ROS) for degradation of refractory organic pollutants. We in-situ monitored the generation of hydroxyl radicals ( center dot OH) by selective scavenging tests and chemical trapping experiments. The operational factors such as rotation speed, gas atmosphere, solution temperature and pH were carefully evaluated for their impacts on the degradation of a plastic microcontaminant, diethyl phthalate (DEP). It was found that the degradation efficiency is closely related to the population of cavitation bubbles in the solution, which was collaboratively governed by the aforementioned factors. A high mechanical agitation speed (600 rpm), great solubility of inert gas atmosphere (Argon), and low reaction temperature (15 & ordm;C) are beneficial to the generation of cavitation bubbles and the associated production of ROS. This work shows a facile strategy to intensify the mechanical energy-to-chemical conversion and provides new mechanistic insights into the ultrasound-based advanced oxidation without external chemical inputs.
(c) 2021 Elsevier Ltd. All rights reserved.
入藏号: WOS:000651349000017
語言: English
文獻類型: Article
作者關鍵詞: Mechanical agitation; Ultrasonics; Reactive oxygen species; Advanced oxidation processes; Hydroxyl radical; Diethyl phthalate
地址: [Nie, Gang; Ren, Wei; Xiao, Ling] Wuhan Univ, Dept Environm Sci & Engn, Wuhan 430079, Peoples R China.
[Nie, Gang; Hu, Kunsheng; Zhou, Peng; Duan, Xiaoguang; Wang, Shaobin] Univ Adelaide, Sch Chem Engn & Adv Mat, Adelaide, SA 5005, Australia.
通訊作者地址: Xiao, L (通訊作者),Wuhan Univ, Dept Environm Sci & Engn, Wuhan 430079, Peoples R China.
Wang, SB (通訊作者),Univ Adelaide, Sch Chem Engn & Adv Mat, Adelaide, SA 5005, Australia.
電子郵件地址: xiaoling9119@whu.edu.cn; shaobin.wang@adelaide.edu.au
影響因子:9.13
版權所有 © 88858cc永利官网
地址:湖北省武漢市珞喻路129号 郵編:430079
電話:027-68778381,68778284,68778296 傳真:027-68778893 郵箱:sres@whu.edu.cn