首頁  >  科學研究  >  科研成果  >  正文
科研成果
博士生王煜淼的論文在COMPUTERS AND ELECTRONICS IN AGRICULTURE 刊出
發布時間:2021-05-21 16:28:53     發布者:易真     浏覽次數:

标題: A new attention-based CNN approach for crop mapping using time series Sentinel-2 images

作者: Wang, YM (Wang, Yumiao); Zhang, Z (Zhang, Zhou); Feng, LW (Feng, Luwei); Ma, YC (Ma, Yuchi); Du, QY (Du, Qingyun)

來源出版物: COMPUTERS AND ELECTRONICS IN AGRICULTURE : 184 文獻号: 106090 DOI: 10.1016/j.compag.2021.106090 出版年: MAY 2021

摘要: Accurate crop mapping is of great importance for agricultural applications, and deep learning methods have been applied on multi-temporal remotely sensed images to classify crops. However, due to the geographic heterogeneity, the spectral profiles of the same crop can vary spatially, and thus using the spectral features alone can limit the model performance in mapping crops in large scales. Moreover, it is a challenge for traditional deep learning models to accurately capture the important information from a large number of features. To address these issues, in this study, we developed a novel attention-based convolutional neural network (CNN) approach (Geo-CBAM-CNN) for crop classification using time series Sentinel-2 images. Specifically, geographic information of crops was first integrated into an advanced attention module, Convolutional Block Attention Module (CBAM) to form a Geo-CBAM module which can help mitigate the impacts of geographic heterogeneity and restrain unnecessary information. Then, the developed Geo-CBAM module was embedded into a CNN model to boost the model?s attention both spectrally and spatially. The proposed Geo-CBAM-CNN model was validated on four main crops over six counties with different geographic environments in the U.S. Also, it was compared to three other state-of-the-art machine learning approaches, including CBAM-CNN, CNN and Random Forest (RF). The results showed that the proposed model achieved the best performance, reaching 97.82% overall accuracy, 96.82% Kappa coefficient and 96.96% Macro-average F1 score. Moreover, the developed Geo-CBAM-CNN model showed strong spatial adaptability, indicating its superior performance in large scale applications. Furthermore, by visualizing the structure of the Geo-CBAM-CNN, we found that the model automatically allocated different weights to the features, and generally, the red-edge features in the middle of the year obtained more attention.

入藏号: WOS:000641351000001

語言: English

文獻類型: Article

作者關鍵詞: Crop classification; Geographic heterogeneity; Attention-based CNN; Sentinel-2

KeyWords Plus: RED-EDGE BANDS; LAND-COVER; NEURAL-NETWORKS; CLASSIFICATION; INTENSIFICATION; MAIZE

地址: [Wang, Yumiao; Feng, Luwei; Du, Qingyun] Wuhan Univ, Sch Resources & Environm Sci, Wuhan 430079, Peoples R China.

[Wang, Yumiao; Zhang, Zhou; Feng, Luwei; Ma, Yuchi] Univ Wisconsin, Biol Syst Engn, Madison, WI 53706 USA.

[Du, Qingyun] Wuhan Univ, Key Lab Geog Informat Syst, Minist Educ, Wuhan 430079, Peoples R China.

[Du, Qingyun] Wuhan Univ, Key Lab Digital Mapping & Land Informat Applicat, Minist Nat Resources, Wuhan 430079, Peoples R China.

通訊作者地址: Zhang, Z (通訊作者)Univ Wisconsin, Biol Syst Engn, Madison, WI 53706 USA.

電子郵件地址: wymfrank@whu.edu.cn; zzhang347@wisc.edu; lwfeng@whu.edu.cn; ma286@wisc.edu; qydu@whu.edu.cn

影響因子:3.858

 

信息服務
學院網站教師登錄 學院辦公電話 學校信息門戶登錄

版權所有 © 88858cc永利官网
地址:湖北省武漢市珞喻路129号 郵編:430079 
電話:027-68778381,68778284,68778296 傳真:027-68778893    郵箱:sres@whu.edu.cn

Baidu
sogou