首頁  >  科學研究  >  科研成果  >  正文
科研成果
丁福源等的論文在JOURNAL OF MATERIALS CHEMISTRY B刊出
發布時間:2013-03-29 11:51:42     發布者:yz     浏覽次數:

标題:Electrochemically stimulated drug release from dual stimuli responsive chitin hydrogel作者:Ding, Fuyuan; Shi, Xiaowen; Jiang, Zhiwei; Liu, Li; Cai, Jie; Li,Zeyong; Chen, Si; Du, Yumin

來源出版物:JOURNAL OF MATERIALS CHEMISTRY B 卷:1 期:12 頁:1729-1737 出版年:2013

摘要:A stimuli-sensitive chitin derivative with water solubility was used for electrochemically stimulated protein release. Chitin was homogeneously functionalized with acrylamide (AM) through Michael addition in NaOH/urea aqueous solution. The product was characterized by Fourier transform infrared spectra (FT-IR), X-ray diffraction (XRD), H-1 nuclear magnetic resonance (H-1-NMR), gel permeation chromatography (GPC) and titration methods. The results show that the water solubility relates to two functional groups (i.e. acylamino and carboxyl groups) and the degree of substitution (DS) can be adjusted by changing the molar ratio of acrylamide to chitin. Importantly, the acrylamide-modified chitin (AMC) is pH-sensitive and cationic sensitive. Reversible sol-gel transition was conducted either by changing the pH or the presence of cationic metal ions in AMC solution. Furthermore, we demonstrate the protein entrapment and release on electrodes can be controlled by electrical signals. Specifically, an anodic signal imposed to the electrode induced a pH decrease that allows a sol-gel transition of AMC adjacent to the electrode and simultaneous protein entrapment. The release of protein from AMC hydrogel can be triggered by a cathodic potential induced pH increase. In the case of cationic ion crosslinked AMC hydrogel, the conversion of Fe2+/Fe3+ was controlled by electrical potentials and the corresponding protein entrapment and release can be achieved based on the fact that Fe3+ can crosslink with AMC to form a gel while Fe2+ lacks the ability to crosslink. The present result represents a facile and "green" method to functionalize chitin and the resulted stimuli-responsive water soluble derivative may have potential applications in controlled drug delivery activated by electrical signals.

入藏号:WOS:000315412300008

文獻類型:Article

語種:English

擴展關鍵詞:THIN-FILMS; DELIVERY; CHITOSAN; ACRYLAMIDE; CELLULOSE; PROTEIN; SYSTEM; ACID; FUNCTIONALIZATION; POLYMERS

通訊作者地址:Ding, Fuyuan;Wuhan Univ, Dept Environm Sci, Coll Resource & Environm Sci, Wuhan 430072, Peoples R China.

電子郵件地址:shixwwhu@163.com

地址:

[Ding, Fuyuan; Shi, Xiaowen; Liu, Li; Du, Yumin] WuhanUniv, Dept Environm Sci, Coll Resource & Environm Sci,Wuhan430072, Peoples RChina.

[Jiang, Zhiwei; Cai, Jie; Li, Zeyong; Chen, Si]WuhanUniv, Dept Chem,Wuhan430072, Peoples RChina.

研究方向:Materials Science

ISSN:2050-750X

信息服務
學院網站教師登錄 學院辦公電話 學校信息門戶登錄

版權所有 © 88858cc永利官网
地址:湖北省武漢市珞喻路129号 郵編:430079 
電話:027-68778381,68778284,68778296 傳真:027-68778893    郵箱:sres@whu.edu.cn

Baidu
sogou