首頁  >  科學研究  >  科研成果  >  正文
科研成果
博士生雷芳妮的論文在ADVANCES IN WATER RESOURCES刊出
發布時間:2014-05-08 15:58:31     發布者:yz     浏覽次數:

标題:Improving the estimation of hydrological states in the SWAT model via the ensemble Kalman smoother: Synthetic experiments for the Heihe River Basin in northwest China作者:Lei, Fangni; Huang, Chunlin; Shen, Huanfeng; Li, Xin

來源出版物:ADVANCES IN WATER RESOURCES 卷:67 頁:32-45 DOI:10.1016/j.advwatres.2014.02.008 出版年:MAY 2014

摘要:Data assimilation as a method to predict variables, reduce uncertainties and explicitly handle various sources of uncertainties has recently received widespread attention and has been utilized to combine in situ and remotely sensed measurements with hydrological models. However, factors that significantly influence the capability of data assimilation still need testing and verifying. In this paper, synthetic surface soil moisture data are assimilated into the Soil and Water Assessment Tool (SWAT) model to evaluate their impact on other hydrological variables via the ensemble Kalman smoother (EnKS), using data from the Heihe River Basin, northwest China. The results show that the assimilation of surface soil moisture can moderately improve estimates of deep layer soil moisture, surface runoff and lateral flow, which reduces the negative influences of erroneous forcing and inaccurate parameters. The effects of the spatially heterogeneous input data (land cover and soil type) on the performance of the data assimilation technique are noteworthy. Moreover, the approaches including inflation and localization are specifically diagnosed to further extend the capability of the EnKS.

入藏号:WOS:000333980300003

文獻類型:Article

語種:English

作者關鍵詞:Soil moisture, SWAT, Data assimilation, Heterogeneity, EnKS

擴展關鍵詞:LAND DATA ASSIMILATION; SURFACE SOIL-MOISTURE; SEQUENTIAL DATA ASSIMILATION; DATA RESOLUTION; FILTER; UNCERTAINTY; STREAMFLOW; PERFORMANCE; CALIBRATION; SYSTEM

通訊作者地址:Huang, Chunlin; Chinese Acad Sci, Cold & Arid Reg Environm & Engn Res Inst, Lanzhou 730000, Gansu, Peoples R China.

電子郵件地址:huangcl@lzb.ac.cn; shenhf@whu.edu.cn

地址:

[Lei, Fangni; Shen, Huanfeng] Wuhan Univ, Sch Resource & Environm Sci, Wuhan 430079, Hubei, Peoples R China.

[Lei, Fangni; Huang, Chunlin; Li, Xin]Chinese Acad Sci, Cold & Arid Reg Environm & Engn Res Inst, Lanzhou 730000, Gansu, Peoples R China.

研究方向:Water Resources

ISSN:0309-1708

信息服務
學院網站教師登錄 學院辦公電話 學校信息門戶登錄

版權所有 © 88858cc永利官网
地址:湖北省武漢市珞喻路129号 郵編:430079 
電話:027-68778381,68778284,68778296 傳真:027-68778893    郵箱:sres@whu.edu.cn

Baidu
sogou