首頁  >  科學研究  >  科研成果  >  正文
科研成果
張繼賢、博士生段敏燕的論文在REMOTE SENSING刊出
發布時間:2014-11-14 09:16:18     發布者:yz     浏覽次數:

标題:Automatic Vehicle Extraction from Airborne LiDAR Data Using an Object-Based Point Cloud Analysis Method作者:Zhang, Jixian; Duan, Minyan; Yan, Qin; Lin, Xiangguo

來源出版物:REMOTE SENSING 卷:6 期:9 頁:8405-8423 DOI:10.3390/rs6098405 出版年:SEP 2014

摘要:Automatic vehicle extraction from an airborne laser scanning (ALS) point cloud is very useful for many applications, such as digital elevation model generation and 3D building reconstruction. In this article, an object-based point cloud analysis (OBPCA) method is proposed for vehicle extraction from an ALS point cloud. First, a segmentation-based progressive TIN (triangular irregular network) densification is employed to detect the ground points, and the potential vehicle points are detected based on the normalized heights of the non-ground points. Second, 3D connected component analysis is performed to group the potential vehicle points into segments. At last, vehicle segments are detected based on three features, including area, rectangularity and elongatedness. Experiments suggest that the proposed method is capable of achieving higher accuracy than the exiting mean-shift-based method for vehicle extraction from an ALS point cloud. Moreover, the larger the point density is, the higher the achieved accuracy is.

入藏号:WOS:000343093800023

文獻類型:Article

語種:English

作者關鍵詞:filtering, digital elevation models, point cloud segmentation, shape, connected component analysis, mean shift

擴展關鍵詞:PROGRESSIVE TIN DENSIFICATION; URBAN AREAS; FILTER; CLASSIFICATION; SEGMENTATION; ALGORITHMS; TOPOLOGY

通訊作者地址:Duan, Minyan; Wuhan Univ, Sch Resource & Environm Sci, Wuhan 430079, Peoples R China.

電子郵件地址:jxzhang@casm.ac.cn; duanmy@casm.ac.cn; yanq@sbsm.gov.cn; linxiangguo@gmail.com

地址:

[Zhang, Jixian; Duan, Minyan]Wuhan Univ, Sch Resource & Environm Sci, Wuhan 430079, Peoples R China.

[Zhang, Jixian; Duan, Minyan; Lin, Xiangguo] Chinese Acad Surveying & Mapping, Beijing 100830, Peoples R China.

[Yan, Qin] Natl Adm Surveying Mapping & Geoinformat, Beijing 100830, Peoples R China.

研究方向:Remote Sensing

ISSN:2072-4292

信息服務
學院網站教師登錄 學院辦公電話 學校信息門戶登錄

版權所有 © 88858cc永利官网
地址:湖北省武漢市珞喻路129号 郵編:430079 
電話:027-68778381,68778284,68778296 傳真:027-68778893    郵箱:sres@whu.edu.cn

Baidu
sogou