首頁  >  科學研究  >  科研成果  >  正文
科研成果
博士生李同文的論文在REMOTE SENSING 刊出
發布時間:2020-09-23 15:04:38     發布者:易真     浏覽次數:

标題: Remote Sensing Estimation of Regional NO(2)via Space-Time Neural Networks

作者: Li, TW (Li, Tongwen); Wang, Y (Wang, Yuan); Yuan, QQ (Yuan, Qiangqiang)

來源出版物: REMOTE SENSING  : 12  : 16  文獻号: 2514  DOI: 10.3390/rs12162514  出版年: AUG 2020  

摘要: Nitrogen dioxide (NO2) is an essential air pollutant related to adverse health effects. A space-time neural network model is developed for the estimation of ground-level NO(2)in this study by integrating ground NO(2)station measurements, satellite NO(2)products, simulation data, and other auxiliary data. Specifically, a geographically and temporally weighted generalized regression neural network (GTW-GRNN) model is used with the advantage to consider the spatiotemporal variations of the relationship between NO(2)and influencing factors in a nonlinear neural network framework. The case study across the Wuhan urban agglomeration (WUA), China, indicates that the GTW-GRNN model outperforms the widely used geographically and temporally weighted regression (GTWR), with the site-based cross-validation R(2)value increasing by 0.08 (from 0.61 to 0.69). Besides, the comparison between the GTW-GRNN and original global GRNN models shows that considering the spatiotemporal variations in GRNN modeling can boost estimation accuracy. All these results demonstrate that the GTW-GRNN based NO(2)estimation framework will be of great use for remote sensing of ground-level NO(2)concentrations.

入藏号: WOS:000565445000001

語言: English

文獻類型: Article

作者關鍵詞: ground NO2; TROPOMI; GTW-GRNN; GRNN

KeyWords Plus: TEMPORALLY WEIGHTED REGRESSION; LAND-USE REGRESSION; GROUND-LEVEL PM2.5; NITROGEN-DIOXIDE; AIR-POLLUTION; CHINA; NO2; MORTALITY; CITIES; METAANALYSIS

地址: [Li, Tongwen] Wuhan Univ, Sch Resource & Environm Sci, Wuhan 430079, Peoples R China.

[Wang, Yuan; Yuan, Qiangqiang] Wuhan Univ, Sch Geodesy & Geomat, Wuhan 430079, Peoples R China.

[Yuan, Qiangqiang] Wuhan Univ, Key Lab Geospace Environm & Geodesy, Minist Educ, Wuhan 430079, Peoples R China.

通訊作者地址: Yuan, QQ (corresponding author)Wuhan Univ, Sch Geodesy & Geomat, Wuhan 430079, Peoples R China.

Yuan, QQ (corresponding author)Wuhan Univ, Key Lab Geospace Environm & Geodesy, Minist Educ, Wuhan 430079, Peoples R China.

電子郵件地址: litw@whu.edu.cn; 2013301610195@whu.edu.cn; qqyuan@sgg.whu.edu.cn

影響因子:4.509


信息服務
學院網站教師登錄 學院辦公電話 學校信息門戶登錄

版權所有 © 88858cc永利官网
地址:湖北省武漢市珞喻路129号 郵編:430079 
電話:027-68778381,68778284,68778296 傳真:027-68778893    郵箱:sres@whu.edu.cn

Baidu
sogou