首頁  >  科學研究  >  科研成果  >  正文
科研成果
杜清運、博士生馮璐玮的論文在Atmospheric Environment刊出
發布時間:2020-06-15 17:31:02     發布者:易真     浏覽次數:

标題: Estimating hourly and continuous ground-level PM2.5 concentrations using an ensemble learning algorithm: The ST-stacking model

作者: Feng, LW (Feng, Luwei); Li, YY (Li, Yiyan); Wang, YM (Wang, Yumiao); Du, QY (Du, Qingyun)

來源出版物: Atmospheric Environment   :223  文獻編号: 117242    出版: FEB 15 2020

摘要: Estimation of hourly and continuous ground-level fine particulate matter (PM2.5) concentrations is essential for PM2.5 pollution sources identifications, targeted policy development and population exposure research. However, current PM2.5 estimation studies rely heavily on satellite-based aerosol optical depth (AOD) data, and the limited transit times of polar-orbiting satellites such as Terra and Aqua, nighttime gaps in data from geostationary satellites such as Himawari-8, and cloud contamination reported for both types of satellites challenge the estimation of spatiotemporally continuous PM2.5 concentrations. In this study, spatiotemporal PM2.5 characteristic was constructed by the spatiotemporal fusion method. Specifically, multi-source data, including spatiotemporal, periodic, meteorological, vegetation, anthropogenic and topological characteristics, were incorporated into an ensemble learning method that combined extreme gradient boosting (XGBoost), k-nearest neighbour (KNN) and back-propagation neural network (BPNN) algorithms in level 1 and used linear regression (LR) for integration in level 2. The optimized stacking strategy that considered PM2.5 spatiotemporal autocorrelation was called the ST-stacking model. The model was trained, validated and tested with data acquired for China in 2017. The ST-stacking model outperformed XGBoost, KNN and BPNN models by 9.27% on average, with an R² = 0.9191. Using the model, the 24-h and continuous ground-level PM2.5 concentrations in mainland China on 11 May 2017 were mapped, and parts of Beijing and Chengdu were selected for more detailed analysis. The PM2.5 concentrations in Taklimakan Desert, North China Plain, Sichuan Basin and Yangtze Plain were much higher than those in other locations on this day, which was generally consistent with the long-term patterns reported in previous studies.

作者關鍵詞: Spatiotemporal fusion; Stacking strategy; Hourly PM2.5 concentration; China; PM2.5 mapping

地址: [Feng, Luwei; Li, Yiyan; Wang, Yumiao; Du, Qingyun] Wuhan Univ, Sch Resources & Environm Sci, Wuhan 430079, Peoples R China.

[Du, Qingyun] Wuhan Univ, Key Lab GIS, Minist Educ, Wuhan 430079, Peoples R China.

[Du, Qingyun] Wuhan Univ, Key Lab Digital Mopping & Land Informat Applicat, Natl Adm Surveyin G Mapping & Geoinformat, Wuhan 430079, Peoples R China.

[Du, Qingyun] Wuhan Univ, Collaborat Innovat Ctr Geospatial Technol, Wuhan 430079, Peoples R China.

通訊作者地址: Du, QY (通訊作者)Wuhan Univ, Sch Resources & Environm Sci, Wuhan 430079, Peoples R China.

電子郵件地址: qydu@whu.edu.cn

影響因子:4.012


信息服務
學院網站教師登錄 學院辦公電話 學校信息門戶登錄

版權所有 © 88858cc永利官网
地址:湖北省武漢市珞喻路129号 郵編:430079 
電話:027-68778381,68778284,68778296 傳真:027-68778893    郵箱:sres@whu.edu.cn

Baidu
sogou