首頁  >  科學研究  >  科研成果  >  正文
科研成果
蘇俊英的論文在FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY 刊出
發布時間:2019-09-25 09:42:48     發布者:易真     浏覽次數:

标題: A NEW SPECTRAL SPATIAL JOINTED HYPERSPECTRAL IMAGE CLASSIFICATION APPROACH BASED ON FRACTAL DIMENSION ANALYSIS

作者: Su, JY (Su, Junying); Li, YK (Li, Yingkui); Hu, QW (Hu, Qingwu)

來源出版物: FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY  : 27  : 5  文獻号: 1950079  DOI: 10.1142/S0218348X19500798  出版年: AUG 2019  

摘要: ID maximize the advantages of both spectral and spatial information, we introduce a new spectral-spatial jointed hyperspectral image classification approach based on fractal dimension (FD) analysis of spectral response curve (SRC) in spectral domain and extended morphological processing in spatial domain. This approach first calculates the FD image based on the whole SRC of the hyperspectral image and decomposes the SRC into segments to derive the FD images with each SRC segment. These FD images based on the segmented SRC are composited into a multidimensional FD image set in spectral domain. Then, the extended morphological profiles (EMPs) are derived from the image set through morphological open and close operations in spatial domain. Finally, all these EMPs and FD features are combined into one feature vector for a probabilistic support vector machine (SVM) classification. This approach was demonstrated using three hyperspectral images in urban areas of the university campus and downtown area of Pavia, Italy, and the Washington DC Mall area in the USA, respectively. We assessed the potential and performance of this approach by comparing with PCA-based method in hyperspectral image classification. Our results indicate that the classification accuracy of our proposed method is much higher than the accuracies of the classification methods based on the spectral or spatial domain alone, and similar to or slightly higher than the classification accuracy of PCA-based spectral-spatial jointed classification method. The proposed FD approach also provides a new self-similarity measure of land class in spectral domain, a unique property to represent hyperspectral self-similarity of SRC in hyperspectral imagery.

入藏号: WOS:000484177000011

語言: English

文獻類型: Article

作者關鍵詞: Hyperspectral image Classification; Fractal Dimension (FD); Spectral Response Curve (SRC); Extended Morphological Profiles (EMPs); Support Vector Machine (SVM)

地址: [Su, Junying] Wuhan Univ, Sch Resource & Environm Sci, Wuhan 430079, Hubei, Peoples R China.

[Hu, Qingwu] Wuhan Univ, Sch Remote Sensing & Informat Engn, Wuhan 430079, Hubei, Peoples R China.

[Li, Yingkui] Univ Tennessee, Dept Geog, Knoxville, TN 37996 USA.

通訊作者地址: Hu, QW (通訊作者)Wuhan Univ, Sch Remote Sensing & Informat Engn, Wuhan 430079, Hubei, Peoples R China.

電子郵件地址: jysu_sjy@whu.edu.cn; yli32@utk.edu; huqw@whu.edu.cn

影響因子:2.971


信息服務
學院網站教師登錄 學院辦公電話 學校信息門戶登錄

版權所有 © 88858cc永利官网
地址:湖北省武漢市珞喻路129号 郵編:430079 
電話:027-68778381,68778284,68778296 傳真:027-68778893    郵箱:sres@whu.edu.cn

Baidu
sogou