首頁  >  科學研究  >  科研成果  >  正文
科研成果
博士生龍陽可的論文在CHEMOSPHERE刊出
發布時間:2018-12-18 15:46:55     發布者:易真     浏覽次數:

标題:N-doped hierarchically porous carbon for highly efficient metal-free catalytic activation of peroxymonosulfate in water: A non-radical mechanism

作者: Long, YK (Long, Yangke); Bu, SF (Bu, Sifan); Huang, YX (Huang, Yixuan); Shao, YQ (Shao, Yueqi); Xiao, L (Xiao, Ling); Shi, XW (Shi, Xiaowen)

來源出版物:CHEMOSPHERE 卷:216 頁碼:545-555 DOI10.1016/j.chemosphere.2018.10.175 出版年:FEB 2019  

摘要:  Metal-free carbo-catalyst has recently emerged as a promising candidate as a substituent for tradition metal based heterogeneous catalyst for catalytic activation of peroxymonosulfate (PMS). However, most reported carbo-catalysts suffer from low catalytic efficiency and poor stability, thus a high-performance catalyst is urgently desired. In this study, a novel carbo-catalyst (NHPC-800), prepared by using tannic acid and dicyandiamide as renewable carbon/nitrogen feedstocks via a simple pyrolysis route, is reported as an activator of PMS with highly efficient catalytic ability and stability. The as-prepared NHPC-800 possesses as high as 22.4 atom% of nitrogen dopants and a hierarchically porous structure with abundant meso/macropores, accompanied by the abundant edges and wrinkles, which supply sufficient exposed catalytically active centers and fast electrons/mass transportations. Using rhodamine B as a model pollutant, the NHPC-800 shows a highly efficient catalytic ability which is superior to most reported carbo-catalysts and even some state-of-the-art metal catalysts. Based on competitive quenching experiments and electron paramagnetic resonance (EPR) results, a non-radical pathway involving the generation of O-1(2) is responsible for the degradation of pollutants. Given that the NHPC-800 shows good recycling performance and strong resistance to adventitious interference such as anions and natural organic matters, we believe NHPC-800 can be a promising candidate for practical applications, and this study can provide inspirations for the further development of highly efficient carbo-catalysts.

入藏号:WOS:000451494600059

文獻類型:Article

語種:English

作者關鍵詞:Tannic acid; Nitrogen doped carbon; Peroxymonosulfate; Pollutant degradation; Non-radical mechanism

通訊作者地址:Xiao, L (reprint author), Luojia Mt Wuchang, Wuhan 430072, Hubei, Peoples R China.

電子郵件地址:xiaoling9119@whu.edu.cn

地址:[Long, Yangke; Bu, Sifan; Huang, Yixuan; Shao, Yueqi; Xiao, Ling; Shi, Xiaowen] Wuhan Univ, Key Lab Biomass Resource Chem & Environm Biotechn, Sch Resource & Environm Sci, Wuhan 430072, Peoples R China.

影響因子:4.427


信息服務
學院網站教師登錄 學院辦公電話 學校信息門戶登錄

版權所有 © 88858cc永利官网
地址:湖北省武漢市珞喻路129号 郵編:430079 
電話:027-68778381,68778284,68778296 傳真:027-68778893    郵箱:sres@whu.edu.cn

Baidu
sogou